
Elliptic Curve Cryptography: Algorithms and

Implementation Analysis over Coordinate Systems

1
Iskandar Setiadi,

2
Achmad Imam Kistijantoro

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia
1
iskandarsetiadi@students.itb.ac.id,

2
imam@informatika.org

Atsuko Miyaji

School of Informatics Science

Japan Advanced Institute of Science and Technology

Nomi, Japan

miyaji@jaist.ac.jp

Abstract— Since the last decade, the growth of computing power

and parallel computing has resulted in significant needs of effi-

cient cryptosystem. Elliptic Curve Cryptography (ECC) offers

faster computation and stronger security over other asymmetric

cryptosystems such as RSA. ECC can be used for several cryp-

tography activities: secret key sharing, message encryption, and

digital signature. This paper gives step-by-step tutorial to trans-

form ECC over prime field GF(p) from mathematical concept to

the software implementation. This paper also gives several al-

ternatives and tradeoffs between different coordinate systems in

the computational process. The implementation result is quite

interesting since several computational costs have been opti-

mized in latest instruction sets. For the study case, we provides

the implementation result in C language with GNU GMP library

on Intel i3 CPU M350 2.27GHz (1 Core, 2 GB RAM, 32-bit ar-

chitecture).

Cryptography, Elliptic Curve, Coordinate System, ECC

Algorithm

I. INTRODUCTION

Elliptic curve cryptography is a class of public-key cryp-
tosystem which was proposed by N. Koblitz [1] and V. Miller
[2]. ECC protocols assume that finding the elliptic curve dis-
crete algorithm is infeasible. ECC provides strong security as
RSA with smaller bits key, which implies faster performance
and lower computational complexity. A 160-bit key in ECC
has the same security level as 1024-bit key in RSA [3].

There are several parameters and algorithm choices which
should be considered before implementing ECC system. Sev-
eral curve domain parameters (field representation, curve
type), algorithm for field arithmetic, elliptic curve arithmetic,
and protocol arithmetic can be influenced by security factors,
platform, constraints, and communications environment [4].

Algorithms and coordinate systems, which are given in this
paper, are used to emphasize the benefit of elliptic curve in
cryptosystems and give an insight for technical people to im-
plement a simple elliptic curve cryptosystem. This paper also
offers several performance comparisons to show the tradeoffs
between coordinate systems. It should be noted that there are
several other researches which have tried to optimize ECC
algorithms in several different ways [4] [5] [6] [7] [8].

II. BASIC CONCEPTS

A. Finite Field

Finite field, which is also known as Galois field, is an al-
gebraic system defined on a set F that contains a finite number
of elements. Finite field needs to have well-defined binary
operations (+, x) satisfying the abelian group. It should be
noted that finite field only exists when the order is a prime
power p

k
(p: prime number, k: positive integer). The formal

proof of finite field is omitted [9].

B. Elliptic Curves

The general Weierstrass equation defines a cubic curve
over a field as the following:

 2 3 2

1 3 2 4 6:E y a xy a y x a x a x a       

where a1, a2, a3, a4, a6 F and the discriminant of E is not
equal zero (  0). Alongside, there is a specified point at
infinity which is denoted as O. From the general Weierstrass
equation, any elliptic curve E in its standard form can be writ-
ten as:

 2 3:E y x ax b    

where the value of a, b are predefined and   -16 (4a
3
 +

27b
2
)  . Figure 1 below represents y

2
 = x

3
 – x + 1 over real

() field:

Figure 1. Elliptic curve where a = -1 and b = 1

978-1-4673-8143-7/15/$31.00 ©2015 IEEE

Since it satisfies the abelian group, we need to define bina-
ry operations over elliptic curve. All operations in abelian
group are commutative. These operations are defined as:

Let P and Q be two points in the curve.

 P + Q where P  Q  O will be resulted in a new
point R (P + Q = R).

 If P + Q doesn’t intersect the curve, we can say that P
+ Q is equal to infinity (P + Q = O). This case hap-
pens when P = -Q  P (x, y), Q (x, -y)

 If P = O or Q = O, this operation will be resulted in
the other point. For example, if P = O, then P + Q =
O + Q = Q (vice versa).

 P + Q where P = Q  O can be denoted as 2P. If the
y-coordinate is equal to 0, 2P is equal to infinity (2P
= O).

 If P = Q = O, we can infer that P + Q = O + O = O.

C. Elliptic Curves over GF(p)

For cryptographic purposes, we want to use integer points
instead of real points across the curve. Let GF(p) be the finite
field with p elements and E be an elliptic curve. To find all the
points in the finite field GF(p), we only need to consider x =
0,1,…,p-1 and take the square root to find the value of y.

Since elliptic curve is symmetric over y = 0, it is guaran-
teed that every valid x-coordinate in the curve can represent y-
coordinates in two different points: a (mod p) and [p-a](mod
p), where a is the square root value in modulo p.

The number of points (order) on elliptic curve over finite
field can be computed using Schoof’s algorithm [10]. Hasse’s
theorem [11] gives us an estimation of the number of points N

by |N – (p + 1)| ≤ 2. p . Fortunately, there are several stand-

ard curves which can be used for implementing elliptic curve
cryptosystems such as NIST [12], so that number of points on
elliptic curve is already known.

D. Single Coordinate Systems

In the early implementation, an elliptic curve can be repre-
sented by several coordinate systems. The simplest one is af-
fine coordinates. In order to improve the performance of ellip-
tic curve computation, there are several coordinate systems
such as projective coordinates, Jacobian coordinates, Chud-
novsky Jacobian coordinates, and Modified Jacobian coordi-
nates. The representation of each coordinate system can be
written as below:

 Affine coordinates:

P (x, y)

 Projective coordinates:

P (X, Y, Z)

where x = X / Z and y = Y / Z

 Jacobian coordinates:

P (X, Y, Z)

where x = X / Z
2
 and y = Y / Z

3

 Modified Jacobian coordinates:

P (X, Y, Z, aZ
4
)

where a is the value from E : y
2
 = x

3
 + ax + b, x = X /

Z
2
 and y = Y / Z

3

E. Mixed Coordinate Systems

It is possible to mix different coordinates for the computa-
tion in point arithmetic level. The mixing between Jacobian
and affine (+ Af) for addition operation only uses (8M + 3S)

computational time, compared to + (12M + 4S) and Af +

Af (2M + S + I) [M: Multiplication, S: Squaring, I: Inversion].
As the number of bits gets longer, the computational cost of I
(inversion) gets more expensive. Formula for Jacobian + af-
fine operation can be written as:

Let P + Q = R where P, Q  O defined as:

P (X1, Y1, Z1) in Jacobian coordinate

Q (X2, Y2) in affine coordinate

R (X3, Y3, Z3) in Jacobian coordinate

Let define A, B, C, D as the following:

A = X2.Z1
2
, B = Y2.Z1

3
, C = A - X1, D = B - Y1

From these variables, we can derive:

X3 = D
2
 - (C

3
 + 2 X1.C

2
)

Y3 = D. (X1.C
2
 - X3) - Y1. C

3

Z3 = Z1. C 

In this paper, three coordinate systems will be used: affine
coordinates (Af), Jacobian coordinates (), and mixed coordi-

nates between Jacobian and affine (+Af). Affine and Jaco-

bian coordinates are chosen because of their simplicity in rep-
resenting ECC computations. We can also utilize those coor-
dinate systems to show the differences between single and
mixed coordinate systems.

III. ELLIPTIC CURVE CRYPTOSYSTEMS

Elliptic curve has been adapted for several cryptographic

schemes, such as:

- Key agreement scheme : ECDH, ECDHE

- Encryption scheme : ECIES, PSEC

- Digital signature scheme : ECDSA

For better understanding, this part will elaborate the im-

plementation of ECDH and ECIES.

A. Key Agreement Scheme

ECDH (Elliptic Curve Diffie-Hellman) is a scheme where
two or more parties can agree on a key over insecure channel.
The agreed key is usually used to derive another key which
can be used for symmetric key cipher (i.e. AES). On the other

occasion, we can use the shared key directly, but it still con-
tains weak bits due to the Diffie-Hellman exchange; the solu-
tion is that we can hash the shared key in order to remove the-
se weak bits. It should be noted that Diffie-Hellman scheme
doesn’t provide authentication; authenticity assurance must be
obtained by other mechanism.

For this key agreement key, each party must agree upon
the domain parameters (prime case): p as the finite field size, a,
b as the curve parameters, G as the point generator, n as the
order of G, and h as the cofactor.

Let P1 be the private key of A, P2 be the private key of B,

Q1 be the public key of A, and Q2 be the public key of B. P1,

P2 are random numbers in interval [1, n-1] where Q1 = [P1].G

and Q2 = [P2].G.

Algorithm 1. ECDH

INPUT:

Q where Q is the public key of other party

Pk where Pk is the private key of receiver
OUTPUT:

x where x is the shared key between two parties
STEP:

1. R  [Pk].Q

2. Return(Rx)

The first party will calculate R = [P1]. ([P2].G) while the

second party will calculate R = [P2]. ([P1].G). Since the multi-

plication operation is commutative, both parties will calculate

the same value of R. The shared secret is Rx (x is coordinate of

the point). This shared secret, as stated above, can be used for

symmetric key cipher or other cryptographic schemes.

B. Encryption Scheme

On the early age of elliptic curve cryptosystems, there are
several choices of scheme integration such as Massey-Omura
and ElGamal cryptosystems ([13]). The main problem is that
there is no convenient method known in transforming
plaintext to points on E.

ECIES (Elliptic Curve Integrated Encryption Scheme) in-
corporates a symmetric-key encryption and message authenti-
cation scheme. This section will provide a simplification of
ECIES (see ([14]) for the original idea).

For this scheme, we will use same variable notations as in
Section 3A.

Algorithm 2. Simplified ECIES (Encryption)

INPUT:

Q where Q is the public key of other party

m where m is the intended message
OUTPUT:

e where e is the encrypted message

C (x,y) where C is the chosen point
STEP:

1. Choose random value k [1,n-1]

2. C  [k].G

3. R  [k].Q

4. e  (Rx*DECIMAL(m)) modulo p

5. Return (e,C)

DECIMAL()function above is used to transform plaintext

to the decimal value. For example, we can use ASCII

convention to convert ‘A’  65, etc. It can be inferred from

Step 3 that R = [k].Q = [k]. ([Pk].G). The cipher text consists

of two components: encrypted message e and chosen point C.

Algorithm 3 below shows decryption process of the cipher

text.

Algorithm 3. Simplified ECIES (Decryption)

INPUT:

e where e is the encrypted message

C where C is the chosen point

Pk where Pk is the private key of receiver
OUTPUT:

d where d is the decoded message
STEP:

1. R  [Pk].C

2. d  (e*(Rx)
-1) modulo p

3. Return(TEXT(d))

TEXT()function above is used to transform decimal value

back to the original message. This protocol assumes both par-

ties use the same message encoding agreement.

Step 1 above computes R = [Pk].C = [Pk]. ([k].G). The val-

ue of R from Algorithm 3 is equal to the value of R from Al-

gorithm 2. This scheme is similar to the key agreement

scheme as in Section 3A. Finally, Step 2 computes modular

multiplication inverse operation to decrypt the intended mes-

sage.

IV. IMPLEMENTATION

On the scalar arithmetic level, a lot of work has been pub-
lished which focuses on designing the most efficient scalar
multiplication algorithm. A faster algorithm usually requires
bigger memory size while a full-fledged secure algorithm usu-
ally runs slower. For example, elliptic curve implementation in
smart card must be robust against side-channel attacks; it also
requires small memory usage in the computational process. On
the other hand, elliptic curve implementation in application
server is able to use bigger memory size to deliver faster per-
formance. In this section, we will present several algorithms
for solving each case above.

A simple, yet efficient algorithm is binary scalar multipli-
cation algorithm. The basic idea is similar to base conversion,
where multiplication is performed in each shift while addition
is performed in non-zero value bit. There are two variations of
this algorithm: left-to-right binary algorithm and right-to-left
binary algorithm. See Algorithm 4 and Algorithm 5 for better
understanding.

Algorithm 4. Left to Right Binary

INPUT:

P where P is a valid point in the curve (P E(Fq))

k where k is represented in base-2 (kn-1,…, k1, k0)2

OUTPUT:

R where R is a valid point in the curve (R = [k].P)
STEP:

1. Initialize R with P (R  P)

2. for i = n-2 downto 0 do

3. R  2R

4. if (ki = 1) then R  R + P

5. end for

6. Return(R)

Algorithm 5. Right to Left Binary

INPUT:

P where P is a valid point in the curve (P E(Fq))

k where k is represented in base-2 (kn-1,…, k1, k0)2

OUTPUT:

R where R is a valid point in the curve (R = [k].P)
STEP:

1. Initialize R with O (R  O)

 // O is point at Infinity

2. Initialize S with P (S  P)

3. for i = 0 to n-1 do

4. if (ki = 1) then R  R + S

5. S  2S

6. end for

7. Return(R)

The disadvantage of these algorithms above is that they are

insecure to side-channel attack. Attackers can analyze the sca-

lar bit in each loop iterations [15]. These algorithms are not

suitable for the implementation in smart card or other embed-

ded devices. To prevent side-channel attack, Montgomery

ladder algorithm provides efficient and strong security guaran-

tee for performing scalar multiplication in embedded devices

[16].

Algorithm 6. Montgomery Ladder

INPUT:

P where P is a valid point in the curve (P E(Fq))

k where k is represented in base-2 (kn-1,…, k1, k0)2

OUTPUT:

R where R is a valid point in the curve (R = [k].P)
STEP:

1. Initialize R with O (R  O)

 // O is point at Infinity

2. Initialize S with P (S  P)

3. for i = n-1 downto 0 do

4. if (ki = 1) then

5. R  R + S

6. S  2S

7. else

8. S  R + S

9. R  2R

10. end if

11. end for

12. Return(R)

Montgomery ladder performs addition and doubling opera-

tions in each loop iteration. For random value of k, it is ex-

pected that Montgomery ladder will give 30-40% slower per-

formance. The main reason is that binary scalar multiplication

algorithm involves n point doublings and n/2 point additions,

while Algorithm 6 involves the same number of point dou-

blings and point additions.

If the memory is less constrained, we may use window

techniques in our algorithm. The idea of this technique is pre-

computation. For example, k = 30 = (11110)2 requires 5 point

doublings and 4 point additions in binary scalar multiplication

algorithm. By pre-computing 5P, we can perform ((5P * 2) +

5P) * 2 which requires (3+2) point doublings and (2+1) point

additions. This technique is very efficient for computing large

number of k.

In implementing the window technique, NAF (Non-

Adjacent Form) representation will be used. NAF representa-

tion assures the minimum value of Hamming weight. Algo-

rithm 7 below shows the method to compute the width-w

NAF from a positive integer k.

Algorithm 7. Computing the width-w NAF

INPUT:

w where w is the window size
k where k is a positive integer in base-10
OUTPUT:

dn-1,…,d1,d0 where -2
w-1

 ≤ di < 2
w-1

 , di is in base-10, and n is

the length of k in base-2
STEP

1. i  0

2. while k ≥ 1 do

3. if (k modulo 2 = 1) then

4. ki  k modulo 2w

5. if (ki > 2
w-1 – 1) then

6. ki  ki – 2
w

7. end if

8. k  k - ki

9. else

10. ki  0

11. end if

12. k  k / 2

13. i  i + 1

14. end while

15. Return(dn-1,…,d1,d0)

For example, the representation of k = 1122334455 for w =

4 is 1 00001 00070 00050 00700 07000 10007 . (1 -1)

Algorithm 8 below shows scalar multiplication operations

with window-NAF technique.

Algorithm 8. Window – NAF (Left to Right)

INPUT:

P where P is a valid point in the curve (P E(Fq))

w where w is the window size
dn-1,…,d1,d0 where -2

w-1
 ≤ di < 2

w-1
 , di is in base-10, and n is

the length of k in base-2
OUTPUT:

R where R is a valid point in the curve (R = [k].P)
STEP:

1. for all d in {1, 3, …, 2w-1-1} do

2. Ad  [d].P // pre-compute

3. end for

4. Initialize R with O (R  O)

 // O is point at Infinity

5. for i = n-1 downto 0 do

6. d  |di|

7. R  2R

8. if (di > 0) then

9. R  R + Ad

10. else if (di < 0) then

11. R  R - Ad

12. end if

13. end for

14. Return(R)

Typically, smart cards only provide memory in kilobits

size, which is quite small. Algorithm 8 is not quite feasible to

be implemented in such kind of devices. For example, if we

set the windows size to 6, the curve size to 384 bits, and if we

use Jacobian coordinate, we need to pre-compute d =

{1,3,5,…,31}, which requires (16 * 384 * 3) = 18,432 bits.

However, this size constraint is considered small if we need to

implement ECC in an application server.

V. EVALUATION AND ANALYSIS

In this evaluation, RDTSC and RDTSCP method are im-
plemented to measure operation cycles. In this paper, we as-
sume that addition and subtraction require the same amount of
computation cost. From our initial experimentation, multipli-
cation and squaring have a little running time difference in
GMP library, so we can assume that both operations are equal.

The comparison of several basic operations is presented in
Table I. We use Intel i3 CPU M350 2.27GHz (1 Core, 2 GB
RAM, 32-bit architecture) in executing all tests. In addition,
we choose 256-bit length for all evaluations since 256-bit ECC
are often used in practice (OpenSSL, etc).

It is shown that addition and shifting operation require

nearly the same amount of time. We will use A, M, I to denote

the computation complexity of addition, multiplication, and

inversion respectively. Therefore, we can conclude that A =

0.514 M and I = 8.22 M. These results are architecture de-

pendent, where different instruction sets may lead to different

running time. Nevertheless, we can approximate the expected

running time for each algorithm based on these statistics.

TABLE I. PERFORMANCE COMPARISON FOR BASIC OPERATIONS

Basic Operation Average # of Cycles Running Time

Addition 957 0.422 µs

Shifting (2 * k) 941 0.415 µs

Multiplication (k *

k2)
1,861 0.821 µs

Inversion 15,300 6.750 µs

- Average of 10 different k, k2 over 10,000 running times for each k,

k2 (k, k2 is chosen randomly between [1, n-1])

- The average number of cycles in 1 second is 2,266,723,093

This section will compare the performance for scalar mul-

tiplication over different algorithms. Three coordinate sys-

tems will be considered: affine coordinate, Jacobian coordi-

nate, and Jacobian-affine (mixed) coordinate. We will also

show the differences between each scalar multiplication algo-

rithm. The result will be measured in millisecond (ms).

For the implementation verification, we provide elliptic

curve P-256 test vector (Q = [k].G) as below [17]:

k: 112233445566778899

x (base 16):

339150844EC15234807FE862A86BE77977DBFB3

AE3D96F4C22795513AEAAB82F

y (base 16):

B1C14DDFDC8EC1B2583F51E85A5EB3A155840F2

034730E9B5ADA38B674336A21

In Table II below, we present the expected computational
cost for addition and doubling operations in several coordinate
systems.

TABLE II. COMPUTATIONAL COST FOR OPERATIONS OVER SEVERAL

COORDINATE SYSTEMS

Coordinate System Addition Doubling

Af I + 3M + 6A I + 4M + 7A

 16M + 7A 10M + 7A

 + Af 11M + 7A -

- M comprises of multiplication and squaring

- A comprises of addition, shifting, and subtraction

For analysis purpose, left-to-right binary algorithm will be

used to compare the computational costs between several

coordinate systems. In this experiment, we use 256-bit curve

type, so left-to-right binary algorithm requires 128 point dou-

blings and 256 point additions. Theoretically, we can use Ja-

cobian coordinate over affine coordinate if it satisfies I ≥ 8.33

M + 0.33 A. It’s better to use Jacobian-affine coordinate over

affine coordinate if it satisfies I ≥ 6.66 M + 0.33 A. These

results show that Jacobian coordinate is expected to be slower

than affine coordinate in this implementation.

In order to reconfirm these expected computational costs
(Table II), we also check the running time for each operation
(Table III).

TABLE III. COMPARISON BETWEEN EXPECTED AND ACTUAL RUNNING

TIME FOR ADDITION AND DOUBLING OPERATIONS

Coordinate

System
Operation

Expected Run-

ning Time

Actual Running

Time

Af Addition 11.745 µs 11.610 µs

Af Doubling 12.988 µs 13.179 µs

 Addition 16.090 µs 15.792 µs

 Doubling 11.164 µs 11.242 µs

 + Af Addition 11.985 µs 11.854 µs

- Expected running time is calculated from Table I and Table II

- Actual running time: average of 10 different k over 100 running
times for each k (Q = [k].G, k is chosen randomly between [1, n-1])

From Table III, it is expected that left-to-right binary al-

gorithm (Alg. 4) in affine, Jacobian, Jacobian-affine coordi-

nates will run in 4.860 ms, 4.9 ms, 4.412 ms respectively. The

actual running time is shown below (Table IV).

TABLE IV. PERFORMANCE COMPARISON FOR OPERATIONS OVER

SEVERAL COORDINATE SYSTEMS AND SCALAR ALGORITHMS

Coordinate

System

Scalar Al-

gorithm

Memory Con-

strained
Running Time

Af Alg. 4 No 5.037 ms

Af Alg. 5 No 4.925 ms

 Alg. 4 No 5.124 ms

 Alg. 6 No 7.762 ms

 + Af Alg. 4 No 4.771 ms

 + Af Alg. 8
(1)

Yes 3.501 ms

 + Af Alg. 8
(2)

 Yes 3.709 ms

- Curve type P-256 NIST

- Average of 10 different k over 100 running times for each k (Q =

[k].G, k is chosen randomly between [1, n-1])

- (1) Window size = 4; (2) Window size = 5

The result above (Table IV) can be concluded in the fol-

lowing remarks:

 For P-256 NIST curve type in less memory con-

strained platforms, window-NAF Jacobian–affine

coordinate with w = 4 is 46.37% faster and 43.87%

faster than the left-to-right binary algorithm with Ja-

cobian coordinate and affine coordinate respectively

(including the final inversion for Jacobian coordi-

nate).

 For P-256 NIST curve type, window-NAF with w =

4 is 5.94% faster than window-NAF with w = 5. An

optimum window size varies depending on curve

types and environments which are used to conduct

the computation.

 Left-to-right algorithm in Jacobian coordinate is

51.48% faster than Montgomery ladder in the same

coordinate system. It should be noted that Mont-

gomery ladder gives better security guarantee for

embedded systems. However, if there’s a security

guarantee against side-channel attack, left-to-right

algorithm in Jacobian – affine coordinate is 5.58%

faster, 3.23% faster, and 7.4% faster than the left-to-

right algorithm in affine coordinate, right-to-left al-

gorithm in affine coordinate, and left-to-right algo-

rithm in Jacobian coordinate respectively.

 Addition operation and doubling operation may re-

sult in different performances on other architectures.

In this implementation, Jacobian coordinate doesn’t

offer better performance than affine coordinate sys-

tem. On several other researches, it is shown that Ja-

cobian coordinate offers better performance in 8-bit

processor. This result is quite interesting for future

explorations.

 Finally, different mixed coordinate systems and

curve types may yield to better performances. In

other reference [2], there are several mixed coordi-

nate systems which are theoretically faster than win-

dow–NAF in Jacobian–affine coordinate.

REFERENCES

[1] N. Koblitz, "Elliptic curve cryptosystems," Mathematics of
computation 48.177, 1987, pp. 203-209.

[2] V. S. Miller, "Use of elliptic curves in cryptograph,." Advances in
Cryptology—CRYPTO’85 Proceedings.

[3] G. V. S. Raju and Rehan Akbani, "Elliptic curve cryptosystem and its
applications," IEEE Systems, Man and Cybernetics, vol. 2, 2003.

[4] M. Brown, et al., Software implementation of the NIST elliptic curves
over prime fields. Springer Berlin Heidelberg, 2001.

[5] H. Cohen, A. Miyaji, and T. Ono, "Efficient elliptic curve
exponentiation using mixed coordinates," Advances in Cryptology—
ASIACRYPT’98. Springer Berlin Heidelberg, 1998.

[6] A. Miyaji, T. Ono, and H. Cohen, "Efficient elliptic curve
exponentiation," Information and Communications Security, 1997, pp.
282-290.

[7] M. Rivain, "Fast and regular algorithms for scalar multiplication over
elliptic curves," IACR Cryptology ePrint Archive, 2011, pp. 338.

[8] P. Longa and C. Gebotys, "Efficient techniques for high-speed elliptic
curve cryptography," Cryptographic hardware and embedded systems,
CHES, 2010, pp. 80-94.

[9] N. Jacobson, Basic algebra I. Courier Dover Publications, 2012.

[10] R. Schoof, and Par Ren E. Schoof, "Counting points on elliptic curves
over finite fields," 1995.

[11] L. C. Washington, Elliptic curves: number theory and cryptography.
CRC press, 2012.

[12] NIST, Recommended elliptic curves for federal government use,
available at http://csrc.nist.gov/encryption, 1999.

[13] V. G. Martinez, L. Hernández Encinas, and A. Martín Muñoz, “A
comparative analysis of hybrid encryption schemes based on elliptic
curves," Open Mathematics Journal 6, 2013, pp. 1-8.

[14] D. G. Stinson, Cryptography: theory and practice. CRC press, 2005.

[15] Paul Kocher, Joshua Jaffe, and Benjamin Jun, "Differential power
analysis," Advances in Cryptology—CRYPTO’99. Springer Berlin
Heidelberg, 1999.

[16] Peter L. Montgomery, "Speeding the pollard and elliptic curve methods
of factorization," Mathematics of computation 48.177, 1987, pp. 243-
264.

[17] Point at Infinity. Test Vectors for the NIST curves, available at
http://point-at-infinity.org/ecc/nisttv, 2005.

