

978-1-4673-8143-7/15/$31.00 ©2015 IEEE

TippyDB: Geographically-Aware

Distributed NoSQL Key-Value Store

1
Iskandar Setiadi,

2
Achmad Imam Kistijantoro

School of Electrical Engineering and Informatics

Institut Teknologi Bandung

Bandung, Indonesia
1
iskandarsetiadi@students.itb.ac.id,

2
imam@informatika.org

Abstract— The need of scalable databases has raised rapidly in

these past few years. Researchers and developers have tried to

develop several techniques to create replications and partitions in

non-relational databases. However, high latency between distrib-

uted data centers has imposed a costly bottleneck to the system’s

performance. In this paper, we present a system design for non-

relational database – TippyDB – that provides better response

time for users who are accessing our service. We enhance our

system with the important observation that interactions between

people almost always happen in a limited geographical area. We

demonstrate that, in contrast with other NoSQL databases, our

system offers a considerable improvement of performance in a

distributed environment.

Distributed Systems, TippyDB, Database Design, NoSQL, Key-

Value Store, Geolocation, Raft, MongoDB

I. INTRODUCTION

Data play an important value in our daily life, such as eco-
nomics, politics, educations, and other fields. In the past, SQL
databases are widely used to support daily activities in storing
data. As the needs of scalable storage increased, the strict rela-
tional schema in SQL databases is too costly for distributed
system. The increasing demands from industries start a new
age of non-relational database. In 2009, Eric Evans introduced
a new term which is known as NoSQL [1]. NoSQL offers a
non-relational database which provides a scalable and distrib-
uted design in order to maintain availability to global users. As
opposed to the ACID rule of traditional SQL database, NoSQL
needs to take BASE and CAP Theorem into consideration [2]
[3]. Big companies such as Google have developed a number
of alternatives to their distributed database system: BigTable,
MegaStore, and Spanner [4].

Relationship between people has transitioned from onsite
relation to internet-based relation such as social media and
online chat. In spite of borderless characteristics from the In-
ternet, it is important to note that the deployment of data cen-
ters is based on geographical location. A comparative study
from Facebook shows that 70 - 80% of interactions between
people occur in the range of 100 - 500 miles [5]. It is believed
that an accurate prediction of users’ behavior can significantly
improve user experience. This observation is not limited to the
technology of NoSQL. Another research has tried to develop a

distributed system for static pages in a website based on geo-
graphical observation [6]. Based on the same observation, the
akamai system indicates that a local access may reduce net-
work latency 100 times as compared to multi-continent access
[7].

On the other hand, even if a depth analysis to replication
and partition techniques in NoSQL has been researched [8] [9]
[10] [11], there is no robust system which takes users’ geo-
graphical relationship to the consideration. NoSQL databases
tend to use a specific rule in distributing its data such as range-
based and hash-based partitioning. These rules restrict the dis-
tribution of data in geographical deployment of data centers.
Nowadays, several NoSQL databases such as MongoDB start
to realize the importance of geographical distribution and begin
to offer location-aware reads across multiple data centers [12];
however, these services are not automatically scalable and lim-
ited to read operation. As an example, MongoDB requires a
user-specified configuration that associates shard key ranges
with shards hosted on specific node. Upon failure, MongoDB
doesn’t provide additional mechanism for the automatic failo-
ver process.

Our contribution in this paper is to demonstrate that we can
improve the performance of non-relational and distributed da-
tabase system by considering users’ geographical location.
Specifically, we provide a scalable implementation of NoSQL
databases which is named as TippyDB. TippyDB always tries
to store users’ data in the nearest location with the writer. Our
system also provides consistency in stable environment and
prioritizes availability during network partition. In this manner,
TippyDB is flexible and requires minimum intervention from
users in its operational phase. We also demonstrate that our
system design is able to outperform other popular NoSQL da-
tabases (MongoDB with range-based sharding) in providing
lower average response time (Section IV).

While our system design is not omnipotent to all cases, we
believe that the relationship property of users in limited geo-
graphical area can be applied to the large number of modern
applications. Our system design offers a new alternative solu-
tion with substantial benefits to the design of geographically
distributed data centers.

II. RELATED WORK

Technology has grown in a fast-paced manner, where com-
puting powers and network bandwidth have increased signifi-
cantly in the last decade. Using web performance as the study
case, Sundaresan et al. (2013) observe that page load times
stop improving beyond a specific point, as latency becomes the
main performance bottleneck [13]. Latency is bounded to
speed of light and client’s performance will surely stagnate at a
certain level, which is independent to hardware performance.
Over the years, content delivery networks such as Akamai [7]
have been used to minimize the bottleneck of fetching first
byte in web pages. The idea behind content delivery networks
(CDN) is to store data in the nearest geographical mirror with
users’ location.

NoSQL databases are usually deployed in a distributed en-
vironment. This simple fact implies that latency will give a
substantial cost to the overall performance of NoSQL data-
bases. On the further note, there are two popular ways in dis-
tributing data throughout multiple machines: range based and
consistent hashing [10]. Several popular NoSQL databases
such as MongoDB and HBase use range-based partitioning,
while Voldemort, Riak, and Cassandra use hash-based parti-
tioning. These techniques ensure the balanced distribution of
data across multiple data centers. However, social proximity of
human relationships does not follow the same distribution rule
[5]. In several use cases, a closer storage may increase client’s
performance significantly.

In 2014, MongoDB starts to offer a tag-based partitioning,
where MongoDB will store its data in the specified node [12].
This feature can be considered as one step ahead towards geo-
graphically-aware NoSQL database. However, this schema
requires administrator intervention to constantly maintain the
distribution rule. In addition, it is hard to guarantee closest
proximity under node failure in the following schema.

III. SYSTEM DESIGN AND ARCHITECTURE

In this section, we present the system design of TippyDB.
Our prototype is implemented in C++ with additional support
from LevelDB [14] as its database backend and Apache Thrift
[15] [16] as its RPC protocol. LevelDB as a key-value storage
library is used to support basic functions such as insert (Put),
read (Get), and delete (Delete).

In TippyDB, each region may have multiple nodes (repli-
cas), whereas each node may have multiple shards with prede-
fined size. Each node stores the information of other nodes and
its relative distances to those nodes. The complete architecture
can be seen in Figure 1.

Key-value Store. Each of the stored data will be assigned
with a shard key and a logical clock. A shard key consists of
three main components:

- First 4 bytes: denotes the region where the datum is
firstly written

- The next 4 bytes: denotes the node where the datum is
firstly written

- The last 8 bytes: denotes the auto increment key as
unique identifier from each of the nodes

A logical clock (timestamp) is used to differentiate the
newest version of datum in the secondary node. In addition, a
global metadata is also used to identify the primary and sec-
ondary responsibilities in storing data. This metadata will be
updated and propagated throughout all active nodes in order to
ensure the availability of our system. A metadata can be said as
a metadata collection of shard keys, which has the following
specification:

- id: denotes the first 8 bytes from a shard key, which
shows the respective range of data

- primary: denotes the responsible primary node for the
specified range (id)

- secondary: denotes the responsible secondary node(s)
for the specified range (id)

Figure 1. General Architecture of TippyDB.

For example, a datum with shard key “0001 0002
00000001” will be stored in all responsible nodes under id
“0001 0002”. Because of network partition, it is possible to
have two different versions of metadata. In resolving this issue,
our proposed system chooses availability over consistency
which implies a possibility of data loss due to inconsistencies.

Node Coordination. We implement Raft consensus algo-
rithm [17] [18] for coordinating changes in the global metadata.
In short, there are 3 main roles in Raft consensus: leader, can-
didate, and follower. Under node failure and recovery, system
leader will update its metadata and propagate the newest in-
formation to all followers. By using Raft consensus algorithm,
it implies that the system needs more than N/2 nodes to operate.

Write and Replication. Initially, clients store their data
in the nearest node with their geographical position. In this
point, we assume that clients will interact with people which
are located in the same geographical area. The responsible
node will propagate its data to several secondary nodes. These

nodes are specified automatically in the metadata. Figure 2
illustrates the writing and replicating process in TippyDB with
replication factor equals to 3.

Sharding. In order to minimize the amount of unbal-
anced data, TippyDB also offers internal balancing across all
nodes in one region. Each shard has a predefined size in the
configuration file. In our implementation, we define 32 MB as
the default size. Since we want to store our data in the nearest
position with the writers, we will limit our schema such that
writes will be redirected to one of the node in the same region.
A redirection will occur if the current size of the node is great-
er than twice of the preconfigured shard size.

Figure 2. Write and replication in TippyDB.

Query Distribution. As stated above, 70 – 80% of users’
interaction occurs in the effective range of 100 – 500 miles. If
each data center is separated more than 500 miles, we can
make an estimate that 70 – 80% read operation will retrieve
data from the nearest node (Figure 3). In this manner, it is ex-
pected for clients to have lower latency in the average requests.

Figure 3. Query expectations in TippyDB.

Failover Mechanism. In TippyDB, failover is divided
into 2 main phases. The first phase occurs when one of the
active nodes detects the failure of the other node. TippyDB
sends heartbeat to other nodes in the specified timespan. If the
sender does not receive any reply in the configured timespan,
TippyDB will start its first phase of failure detection. Upon
failure detection, one of the active nodes will send a proposal
to the current leader to update its metadata. After accepting a

proposal, the respective secondary node will be selected as a
temporary primary node. This phase ensures that the system is
still available in term of node failure. Figure 4 depicts the illus-
trative diagram of the first phase of failover mechanism.

The second phase starts with choosing the nearest node to
the failed node. This information is initially stored in the con-
figuration file; therefore, each node knows its relative distance
to the other nodes. The current primary will replicate its data to
the chosen node in the background process (Figure 5). Finally,
the global metadata will be updated and the nearest node to the
failed node will take the primary responsibility of the failed
node.

Figure 4. Failover process from secondary.

Figure 5. Resynchronization to the nearest node.

Recovery Process. As depicted in Figure 6, a recovered
node will broadcast a join request to all nodes in order to find
the current active leader. Afterwards, this node will send a pull
request to the respective primary node in order to retrieve the
newest stored data. Upon completion, this node will take over
the responsibility of its primary section and send a proposal to
the current leader to update its metadata. Finally, this node will
be recognized as an active node throughout all regions.

Figure 6. Node recovery from failure.

IV. EXPERIMENTAL EVALUATION

In this experimentation, we evaluated CRUD performances
of TippyDB as compared to the well-known NoSQL database,
MongoDB. We use RDTSC and RDTSCP method for measur-
ing time performance in TippyDB.

We evaluate each operation in 2 access-point deployments,
Singapore and N. Virginia to receive requests from remote
users. We employ t2.micro instances on Amazon EC2, with 2
replicas are configured in Singapore and 1 replica is configured
in N. Virginia. To demonstrate the effect of geographically-
aware aspect of users’ behavior, each experiment is done with
80% write operation to Singapore (the nearest node) and 20%
write operation to N. Virginia (the farthest node).

Request Performance. We measure the average response
time from insert, read, update, and delete operations from Tip-
pyDB and MongoDB. The first experiment is done with 2,000
operations of 100 KB data size and 200 operations of 1,000
KB data size in a stable environment. The second experiment
is done with the same specifications, unless 1 replica in Singa-
pore will be unavailable.

Figure 7. Latency of CRUD operations under varying data size and number

of operations in a stable environment

As plotted in Figure 7, TippyDB achieves better perfor-
mance in all aspects. One of the main reasons is 80% of data in
TippyDB are stored near users’ location. On the other hand,
MongoDB only stores 66.7% of data near users’ location, since
we use 2 replicas in Singapore and 1 replica in N. Virginia.
From [19], it is known that the average RTT between Singa-
pore and N. Virginia is 253.5 ms, so we should expect approx-

imately 30 – 50 ms improvement in average response time.
Meanwhile, write operation in MongoDB performs quite slow
and increases proportionally to data size. We believe this pen-
alty is incurred due to sharding mechanism in MongoDB.

Figure 8 depicts system performance under 1 replica failure
in Singapore. In this scenario, we configure TippyDB to use
specific timeout for its failure detector. If an active node can-
not be contacted in the configured timespan (60 seconds), we
will use the assumption that the respective node has failed. In
this timespan, TippyDB will start a consensus to determine the
newest metadata, which allows a secondary node to take the
responsibility over the failed node. Nevertheless, TippyDB still
outperforms MongoDB in the average response time, since
MongoDB also requires 30 – 60 seconds to finish its failover
process.

Figure 8. Latency of CRUD operations under varying data size and number

of operations in 1 failed node.

Figure 9. Average latency across varying write : read workloads.

Write : Read Proportion. We measure the difference in
performance with different proportion of write and read opera-
tions. This test uses the same environment with the first one.
Each experiment is done with 10,000 requests and 1,024 bytes
data. As seen in Figure 9, TippyDB tends to have faster per-
formance in handling write operation since TippyDB will al-
ways store its data in the nearest node with the client. In terms
of overall performance, TippyDB is approximately twice as
faster as MongoDB in this experimentation.

Basic Performance. We compared the basic performance of
TippyDB and MongoDB in handling CRUD operations. Each
operation is done 100,000 times with 100 bytes data size. Fig-
ure 10 depicts the basic performance of TippyDB and Mon-
goDB in handling local requests. From our observation, the
usage of RPC in Apache Thrift is quite costly, which an empty
RPC needs 466 microseconds / operation in average (compro-
mises 80% of total time). In short, MongoDB still has better
local performance than TippyDB in handling number of re-
quests.

Figure 10. Local performance in handling CRUD operations.

V. CONCLUSION

This paper shows that we are able to construct a NoSQL
database which offers lower average latency based on an ob-
servation that people tend to communicate with others who are
living in the same region. We define our proposed system de-
sign – TippyDB – that always tries to store and rebalance us-
ers’ data in the nearest node with the original writer. In han-
dling requests from users, TippyDB outperforms MongoDB in
create, read, update, and delete operations for 52.48 – 66.16%,
11.63 – 15.01%, 16.21 – 23.07%, and 47.01 – 50.15% respec-
tively. Nevertheless, it should be noted that TippyDB are not
appropriate for all applications; TippyDB is specifically de-
signed for data which are sensitive to the location of users,
such as social media, document editing, etc.

In terms of future work, there are many rooms for im-
provements in TippyDB. These include optimizing resynchro-

nization algorithm, adding scheduler for failover checking, and
implementing new features such as indexing, etc. Furthermore,
a further study of system’s overhead and its mitigation is also
preferred.

REFERENCES

[1] Eric Evans, NoSQL 2009, available at http://blog.sym-
link.com/2009/05/12/nosql_2009.html, 2009.

[2] F. Labs, “CAP Theorem: Its importance in distributed systems,”
available at http://blog.flux7.com/blogs/nosql/cap-theorem-why-does-it-
matter, 2014.

[3] G. Seth, N. Lynch, “Brewer’s conjecture and the feasibility of consistent,
available, partition-tolerant web services,” ACM SIGACT News, 33(2),
pp. 51-59.

[4] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, et al.,
“Spanner: Google’s globally distributed database,” ACM Transactions
on Computer Systems (TOCS), 31(3), 8, 2013.

[5] L. Backstrom, E. Sun, C. Marlow, “Find me if you can: improving
geographical prediction with social and spatial proximity,” Proceedings
of the 19th international conference on World wide web, 2010, pp. 61-70.

[6] V. Cardellini, M. Colajanni, P. S. Yu, “Geographic load balancing for
scalable distributed systems,” Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2000, pp. 20-27.

[7] E. Nygren, R. Sitaraman, J. Sun, “The akamai network: a platform for
high-performance internet applications,” ACM SIGOPS Operating
Systems Review, 44(3), 2010, pp. 2-19.

[8] B. G. Tudorica, C. Bucur, “A comparison between several NoSQL
databases with comments and notes,” Roedunet International
Conference (RoEduNet), 2011, pp. 1-5.

[9] M. Indrawan-Santiago, “Database research: Are we at a crossroad?
Reflection on NoSQL,” Network-Based Information System (NBiS),
2012, pp. 45-51.

[10] R.Hecht, S. Jablonski, “NoSQL Evaluation,” International Conference
on Cloud and Service Computing, 2011.

[11] I. Katsov, “Distributed algorithms in NoSQL databases,” available at
http://highlyscalable.wordpress.com/2012/09/18/distributed-algorithms-
in-nosql-databases/, 2012.

[12] MongoDB, “MongoDB Multi-Data Center Deployments,” MongoDB
Whitepaper, 2014.

[13] S. Sundaresan, N. Feamster, R. Teixeira, N. Magharei, “Measuring and
mitigating web performance bottlenecks in broadband access networks,”
ACM Internet Measurement Conference, 2013.

[14] A. Dent, Getting started with LevelDB. United Kingdom: Packt
Publishing Ltd, 2013.

[15] M. Slee, A. Agarwal, M. Kwiatkowski, “Thrift: scalable cross-language
services implementation,” Facebook White Paper 5, 2007.

[16] A. Prunicki, “Apache Thrift,” available at
http://jnb.ociweb.com/jnb/jnbJun2009.html, 2009.

[17] D. Ongaro, J. Ousterhout, “In search of an understandable consensus
algorithm,” Proc. USENIX Annual Technical Conference, 2014, pp.
305-320.

[18] H. Howard, ARC: Analysis of Raft Consensus. University of Cambridge
Computer Laboratory, 2014.

[19] P. Bailis, A. Davidson, A. Fekete, A. Ghodsi, J. M. Hellerstein, and I.
Stoica, “Highly available transactions: virtues and limitations (extended
version),” Proceedings of the VLDB Endowment 7, no. 3, 2013.

