@ Liberation of Technology

' From Data to Web Application:
Anime Character Image Recognition
with Transfer Learning

PyCon HK 2018

Iskandar Setiadi

Software Engineer at HDE, Inc.

Github

https.//github.com/freedomofkeima

Blog
https.//freedomofkeima.com/blog/

Speaker in:

- 2017. PyCon Japan, PyCon Indonesia
- 2018: PyCon Malaysia, PyCon Japan, and
today, PyCon Hong Kong!

Iskandar Setiadi

From Jakarta, Indonesia
Software Engineer in Japan

HDE, Inc. (https://hde.co.jp/en/)

Image Recognition in Real Life

Self-driving car Smart home

Image Recognltlon in Daily Life

T \ iV . W‘H“
Y " T\ | \\\\H\\ | ‘ _— -r:- 51 £ {) I&‘
Ml 4 (
W ‘1‘ 4 o Lk !
% 4 .- ' N5 i] i

\
\

F
rendered: 168137, dropped: 0, current: 17.19, average: '254"(’3.56

Smart workplace Face ID

ILSVRC

Largest Computer Vision Competition

Starting from 2015, deep
learning has better top-5
error score compared to
human (1000 categories)!

Case #2: ILSVRC 2010-2015
ILSVRC top-5 error on ImageNet

IMAGENET
Accuracy Rate

eTraditional CV # Doep Learning
" g
<
o
-
708 — !
L] ' '
60 ' M
T
0% s
2010 2011 2012 2013 2014 Human ArXiv 2015 .
40 l
e Blue: Traditional CV
i 308
e Purple: Deep Learning
e Red: Human 200

2010 2011 2012 2013 2014 2015

Revolution of Depth

282
25.8
152 layers
A
\
\ 16.4
\ 11.7
22 layers 19 layers I

6.7 7.8
3.57 l e I 8 layers 8 layers shallow

ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'11 [LSVRC'10
ResNet GoogleNet VGG AlexNet

ImageNet Classification top-5 error (%)

Int J Comput Vis (2015) 115:211-252

Candle Oyster Cannon Spider Web

Lizard Stocking

Number of Instances

Compass

Image Clutter

Deformability

Skewdriver _HatchetPool Table Leopard
Amount of Texture

Tank Ant Red Wine
Color Distinctiveness

Foreland Lion 3ell

aall®
R i

Orange Laptop Four-poster Airliner

Jigsaw Puzzle

Shape Distinctiveness

Real-world Size

Low

Image Recognition Challenges

Background

] C' @ Secure | https://saucenao.com/search.php

Problem

SauceNAD
Illumination

Pixiv ID: 61127204
Member: tucana

YOUR IMAGE
s ,§

Creator: tucana

. ~ ;
C ro p p e d I l I l a ge s P Patreon ‘j Material: love live! school idol project Characters:
4 R love live! sunshine!! sakurauchi riko

love live! (series) nishikino maki
‘e need your help!

- Edited images

- Unindexed images

Shanimuni Go
Shanimuni Go - v16 c91 [batoto] - (Manga)

SRADY—REAEVDO UL [IT] SHERE:E BRER

‘We need your help!
Donate

What is Machine Learning?

)~WENEE‘|i 1060

»
z

\

DEEPER &

Deep Learning CAT DOG
IS THIS A

CAT o DOG? oo ———— 3:;:-:\1’

Traditional ML:
ACTIVATED

Increasing number of training Telelelelele
iterations will eventually get — =
stagnated at certain point. RERRREREI

ooooooooo
ooooooooo

Alternative proposal:

More layers! But it is slow :(

Deep Learning: Convolution

1x1 1x0]Ecl 0 0
oxo 1x1 1x0 1 0 4
0,041f1]1
0(0|1|1|0
0(1(1(0|0
[rige Convolved
Feature

0 0 0 0 0 30
0 0 0 0 30 0
0 0 0 30 0 0
0 0 0 30 0 0
0 0 0 30 0 0
0 0 0 30 0 0
0 0 0 0 0 0

Pixel representation of filter

Visualization of a curve detector filter

Deep Learning

Low-Level| |Mid-Level| |High-Level| | Trainable
Feature Feature Feature Classifier

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]

Step 1. Preparation

TensorFlow Installation

$ pip3 install --upgrade tensorflow
or

$ pip3 install --upgrade tensorflow-gpu

URL.: https://www.tensorflow.org/install/

https://www.tensorflow.org/install/

Why should we use Transfer Learning?

From certain Top-5 characters indexing website:

- 35000 registered characters
- Top 1000 characters: 70+ images
- Top 2000 characters: 40+ images

Dataset size is small! Google Inception-v3 uses > 1000 images per category.
With transfer learning, we don’t need to retrain low-level features extraction model.

Result: 100 categories, ~ 60 images per category.

URL: https://www.tensorflow.org/tutorials/image_retraining

https://www.tensorflow.org/tutorials/image_retraining

Scrap & clean up the data

PLEASE STAND BY

Note: Please contact me if you want to know the details

Google Dataset Search (Beta)

& Secure | https://toolbox.google.com/datasetsearch B ¢ R

About

Google Dataset Search...

Try boston education data or weather site:noaa.gov

https://toolbox.google.com/datasetsearch

Google Dataset Search

kaggle

kaggle

kaggle

Tagged Anime lllustrations

www.kaggle.com

Updated Jul 30,2018

Anime Recommendations
Database

www.kaggle.com

Updated Dec 21, 2016

The Simpsons Characters Data

www.kaggle.com

Updated Apr 13,2018

ArtiosCAD Workspace File

vistablog.com.ua

Q

anime character X About L o I

Danbooru2017: A large-scale crowdsourced and tagged anime illustration dataset

The first set of data comes from the imageboard Danbooru. The entire corpus of Danbooru images was scraped from the site with
permission and was collected into a dataset. The zip files included here have the full metadata for these images as well as a subset of
300,000 of the images in normalized 512px x 512px form. Full information about this dataset is available here:

https://www.gwern.net/Danbooru2017
From the article:

Deep learning for computer revision relies on large annotated datasets. Classification/categorization has benefited from the creation of
ImageNet, which classifies Tm photos into 1000 categories. But classification/categorization is a coarse description of an image which
limits application of classifiers, and there is no comparably large dataset of images with many tags or labels which would allow learning
and detecting much richer information about images. Such a dataset would ideally be >1Tm images with at least 10 descriptive tags each
which can be publicly distributed to all interested researchers, hobbyists, and organizations. There are currently no such public datasets,
as ImageNet, Birds, Flowers, and MS COCO fall short either on image or tag count or restricted distribution. | suggest that the image -
boorus be used. The image boorus are longstanding web databases which host large numbers of images which can be tagged or labeled
with an arbitrary number of textual descriptions, they were developed for and are most popular among fans of anime, who provide detailed
annotations.

The best known booru, with a focus on quality, is Danbooru. We create & provide a torrent which contains ~1.9tb of 2.94m images with
77.5m tag instances (of 333k defined tags, ~26.3/image) covering Danbooru from 24 May 2005 through 31 December 2017 (final ID:
#2,973,532), providing the image files & a JSON export of the metadata. We also provide a smaller torrent of SFW images downscaled to
512x512px JPG (241GB; 2,232,462 images) for convenience.

Our hope is that a Danbooru2017 dataset can be used for rich large-scale classification/tagging & learned embeddings, test out the
transferability of existing computer vision techniques (primarily developed using photographs) to illustration/anime-style images, provide
an archival backup for the Danbooru community, feed back metadata improvements & corrections, and serve as a testbed for advanced
techniques such as conditional image generation or style transfer.

Step 2. Analyze the Problem

Face Detection: Introduction

Input Image Detect Transform Crop

Green: Detector bounding box
Black: Mean fiducial points
Blue: Detected fiducial points

\

Deep Neural Network

Representation Clusterlng

—)‘ é Similarity Detection

128D unit hypersphere ClaSS|f|Cat|On

Face Detection (Human Face)

Adapted from https://github.com/shantnu/FaceDetect:

import cv2

faceCascade = cvZ.CascadeClassifier (haarcascade_frontalface default.xml")

image = cv2.imread (imagePath)
gray = cvz.cvtColor (image, cv2.COLOR BGR2ZGRAY)

faces = faceCascade.detectMultiScale(gray, scaleFactor=1.1,

minNeighbors=5, minSize= (30, 30))

https://github.com/shantnu/FaceDetect

Face Detection (Human Face)

Face Detection (Same Model - Anime Face)

. A e Ma

2D is Better not equal to 3D face!

Facial features are different!

e.g.: 2D has no nose

*1

*2

*3

%4

*5

*20

*21

¥24 *¥25 ,op
*19 *
€22 e *27
%38 %39 %28 * 44 * 45
*37, 4o 41740 #43, 454 47446
+29 o
%30
+16
%31
*32 33 34 38 36 %15
*¥51 %52 %53
*50 6o #63 x64 ¥4 wis
*49% 61 - *65¢ 55
*68 £
%60 o 56 -
#50 ,cg *57
*12
*6
%7 *11
*8 *10

*9

Face Detection: Train New Model!

Adapted from https://github.com/nagadomi/lbpcascade animeface:

import cv2

cascade = cvZ.CascadeClassifier ('lbpcascade animeface.xml")

image = cv2.imread (imagePath)
gray = cvz.cvtColor (image, cv2.COLOR BGRZGRAY)

faces = cascade.detectMultiScale (gray, scaleFactor=1.1,

minNeighbors=5, minSize= (24,

24))

https://github.com/nagadomi/lbpcascade_animeface

Face Detection (Anlme Face) |

M\

Face Detection (Same Model - Human Face)

Face Recognition

Face Detection — “Accomplished”
Full-layered Deep Learning — Requires a huge dataset, weeks to train

Google Inception-v3: 1.2 million training data, 1000 classes, 1 week to train

Step 3. Train & Validate the Model

What does the layers learn?

Edges Shapes High level features
| i Classifiers
/ i
(3])
il
Convolution
AvgPool
MaxPool
Concat
@ Dropout

@8 Fully connected
@ Softmax

LBP Resize
Cascade

Feature extraction part

i i

| Feature vectors ||

w only this part. J Preprocessing

Classification part

Transfer Learning for Anime Characters

Transfer Learning: Retrained Layers

Dropout: Dropping out units to prevent overfitting

Fully Connected: Extracting global features, every node in the layer is connected to
the preceding layer

Softmax: Squashing final layer to make a prediction, which sums up to 1. For example,
if we have 2 classes and class A has the value of 0.95, then class B will have the value
of 0.05.

Transfer Learning: Retrain Final Layer

Build the retrainer:

$ bazel build tensorflow/examples/image retraining:retrain

Execute the retrainer:

$ bazel-bin/tensorflow/examples/image retraining/retrain --image_dir ~/images

Hyperparameters: learning rate, number of iterations, distortions factor, ...

Types of headache

MIGRAINE HYPERTENSION

> &

STRESS Working with classifiers

> ®

Original ImageNet: Accuracy vs Dataset size

Imagenet1000 model

From 10 to 100 training images per class, you can 100%
improve your Top-1 accuracy by 5%. - -
From 100 to 1000 training images per class, you g 0%
can only improve it by less than 2%. g 85% —----""""
k7] <
: © 80% /.
Low number of images — bad accuracy 7
75% ! AVE Top-5 accuracy | |

. - -- Avg Top-1 accurac!

Huge number of images — stagnated accuracy . > !
g 10 100 1000

Max number of training images per class

URL.: https://annals-csis.org/Volume_12/drp/pdf/526.pdf

https://annals-csis.org/Volume_12/drp/pdf/526.pdf

Step 4. Serve as a Web App

MoeFlow: Specification

— Build with Sanic (Flask-like Python 3.5+ web server); Caveat: Good for
prototyping, have some memory handling issues

— While training model requires huge GPU resources (g2.2xlarge), using retrained
model can be hosted in server with small resources (t2.small)

What it does:
- Run face detection with OpenCV
- Resize image to a fixed proportion

- Run classification with TensorFlow

MoeFlow: Web App

@app. listener('before_server_start')
async def initialize(app, loop):

moeflow_path = os.environ.get('MOEFLOW_MODEL_PATH')
label_path = os.path.join(os.sep, moeflow_path, "output_labels_2.txt")
model_path = os.path.join(os.sep, moeflow_path, "output_graph_2.pb")
app.label_lines = [
line.strip() for line in tf.gfile.GFile(label_path)
1
graph = tf.Graph()
graph_def = tf.GraphDef()
with tf.gfile.FastGFile(model_path, 'rb') as f:
graph_def.ParseFromString(f.read())
with graph.as_default():
tf.import_graph_def(graph_def, name='")
app.graph = graph
logging.info("MoeFlow model is now initialized!")

URL: https://github.com/freedomofkeima/MoeFlow

https://github.com/freedomofkeima/MoeFlow

def classify_resized_face(file_name, label_lines, graph):
results = []
logging.info('Processing classification')
with tf.Session(graph=graph) as sess:
Feed the image data as input to the graph and get first prediction
softmax_tensor = sess.graph.get_tensor_by_name('final_result:0')
input_operation = sess.graph.get_operation_by_name("Mul")
t = read_tensor_from_image_file(file_name)
predictions = sess.run(
softmax_tensor,
{input_operation.outputs[0]: t}
)
Sort to show labels of first prediction in order of confidence
top_k = predictions[@].argsort()[-3:][::-1]

for node_id in top_k:
human_string = label_lines[node_id]
score = predictions[@] [node_id]
results.append((human_string, score))
return results

MoeFlow: Use Retrained Model

MoeFlow: Use Retrained Model

2017-12-06 01:51:53 - (network) [INFO] [127.0.0.1:49154]: GET http://127.0.0.1:888
8/static/images/83a97094d7634333b5c9d7e8e0901dad. jpg 200 119582

INFO:network:

2017-12-06 01:51:53 - (network) [INFO] [127.0.0.1:49156]: GET http://127.0.0.1:888
8/static/images/e96410fcf8114fbb88adf33ede40205e.jpg 200 5902

INFO:network:

2017-12-06 05:48:33 - (network) [INFO] [127.0.0.1:59920]: GET http://127.0.0.1:888
8/ 200 1180

INFO:network:

INFO:root:Height: 1416, Width: 1280

INFO:root:Input file is created at /tmp/tmpgm8odxy2.jpg

INFO:root:Processing classification

INFO:root: [('tedeza rize', 0.8941825), ('yui', 0.015284972), ('takanashi rikka',
0.014930859)]

2017-12-06 ©5:49:38 - (network) [INFO][127.0.0.1:59970]: POST http://127.0.0.1:88
88/ 200 1565

INFO:network:

2017-12-06 05:49:39 - (network) [INFO][127.0.0.1:59972]: GET http://127.0.0.1:888
8/static/images/fda2e4333b194f30a845ed8d320bf449.jpg 200 294605

INFO:network:

2017-12-06 05:49:39 - (network) [INFO] [127.0.0.1:59974]: GET http://127.0.0.1:888
8/static/images/d9a530d76c17404fbdbde7a2e5bf9c55.jpg 200 5807

INFO:network:

Demo

Output:

Character Prediction (Top-3)

e kafuu chino
® miki sayaka
e kashima

Results /

https://freedomofkeima.com/moeflow/

Input: Output:
Character Prediction (Top-3)

* rem
e tobiichi origami
¢ tachibana kanade

e ram
* rem
e tomoe mami

MRe HOMDEDHHRERLET S LEZHFEYTY.

Results /

https://freedomofkeima.com/moeflow/

Input: Output:

Character Prediction (Top-3)

e kafuu chino
e miki sayaka
e rem

e natsu megumi
e minami kotori
e suzukaze aoba

Results /

https://freedomofkeima.com/moeflow/

Input: Output:
Character Prediction (Top-3)

e kirima sharo
¢ kirisaki chitoge
¢ inokuma youko

e tedezarize
e aragaki ayase
e yatogami tohka

e komichi aya
¢ miki sayaka
e tedezarize

e inokuma youko
e yuigahama yui
¢ nibutani shinka

Results /

https://freedomofkeima.com/moeflow/

Input: Output:

Character Prediction (Top-3)

5

e suzukaze aoba
e kafuu chino

e yamada elf

e yagami kou
e ayase eli
e tomoe mami

™~

rotation / axis problem

Results /

https://freedomofkeima.com/moeflow/

Other Projects / Alternatives

rezoo/illustration2vec

[rezoo / illustration2vec @Watch~ | 29 Unstar 374 YFork 75

Semantic feature vectors. oCode | Obwes@ MPulrecuests® Projcs® EWK i nsights

A simple deep learning library for estimating a set of tags and extracting semantic feature vectors from given illustrations.

® 32 commits ¥ 1branch © 1release 22 1 contributor s MIT
F I Branch: master v New pull request Create new file = Upload files ~ Find file
or example:
°
@ rezoo Update README.md Latest commit 8f4b11d on Aug 30, 2017
| i2v Merge branch ‘master’ of github.com:rezoo/illustration2vec 3 years ago
- (h a ra Cte r [images Add an example image 3 years ago
[papers Add papers 2 years ago
. & .gitignore Add .gitignore 2 years ago
- General (hair color, eye e
[E README.md Update README.md a year ago
CO | O r’ etc) B get_models.sh Update README.md a year ago
README.md
Illustration2Vec

illustration2vec (i2v) is a simple library for estimating a set of tags and extracting semantic feature vectors from given
illustrations. For details, please see our main paper.

Chainer + illustration2vec

C' | @ Secure | https://chainer-colab-notebook.readthedocs.io/ja/latest/notebook/hands_on_ja/chainer/classify_anime_characters.html#

Chainer Colab Notebook

In []: %matplotlib inline
import matplotlib.pyplot as plt
from PIL import Image
from chainer import cuda

‘ Show on chainer.config.train = False
Colaboratory

for _ in range(10):
x, t = valid[np.random.randint(len(valid))]
x = cuda.to_gpu(x)
y = F.softmax(model.predictor(x[None, ...]))

23— S EBNTHE pred = os.path.basename(dnames[int(y.data.argmax())])
label = os.path.basename(dnames[t])
TrainerZ{E> THED

_ print('pred:', pred, 'label:', label, pred == label)
FILLRY hD—OZEBENTHED

— — = cuda.to_cpu(x)
=AY MISREBNTH += mean[:, None, None]

= x / 256

= np.clip(x, 0, 1)
plt.imshow(x.transpose(1, 2, @))
plt.show()

X5 e

Classify Anime Characters with Fine- pred: 168_asagiri_mai label: 168_asagiri_mai True
tuning Model
BILTHD
ChainerRL 71 W2 25— b R

Sentiment Analisys with Recursive
Neural Network

Synthesize Human Speech with
WaveNet

Word2Vec: Obtain word embeddings

1. Introduction
0 5 Y s 100 125 150

https://chainer-colab-notebook.readthedocs.io/en/latest/notebook/hands_on/chainer/classify_anime_characters.html

PaaS - Platform as a Service
<o clarifai

- Clarifai — since 2016

- Azure Custom Vision — Betarelease as 2018 /! @

©

- Google Cloud AutoML — Betarelease as 2018

Cloud AutoML Vision

Services v

Resource Groups - * [\ Iskandar Setiadi ¥ N. Virginia v

Support ¥

Amazon Rekognition

Metrics

Object and scene detection
Image moderation
Facial analysis
Celebrity recognition
| Face comparison

Text in image

Demos

Video analysis

Additional Res rces

n our

Getting started guide
Download SDKs
Developer resources
Pricing

FAQ

Forum

Feedback

Face comparison

Compare faces to see how closely they match based on a similarity percentage.

© InvalidParameterException (400)

Request has Invalid Parameters (Image must contain detectable faces)

Reference face Comparison faces

Done with the demo?
Learn more

» Results
» Request

» Response

Choose a sample image Choose a sample image

rvices, Inc. or its affiliates. All rights reserved

Privacy Policy

Terms of Use

Clarifai Ul

PREDICTED CONCEPTS

7 5 & g 3B @ < v Version Details
Rl “ E @© = — 1 []
—~ ! o] | © L) 1
o - o s (] o - ©
! E ! E 4 g 1 o c -
() © Es) © © [E @ - -l
H 3 s s =4 2 = k) s = = ID bdd8aa6d39aa4c8ab1289cedaf91@..
> - & > 2 — L4 ~ [12 7] w
© © @© @ © @© @© o © © o
ayase_eli 3 0 0 0 %) %) 1 0 %} | o CREATED AT Jun 4, 2018 5:00 pm
0.60
| UNIQUE CONCEPTS 10
aqua © 0 0 0] 0 0 0]
13 0.85
| CONCEPTS MUTUALLY EXCLUSIVE true
ayanami_rei %] 1 4 1 0 0 0 0 0 0
7 0.57 CLOSED ENVIRONMENT false
akemi_homura ©) 0 s o 0 0 o o |o
8 0.75
2 | [
o . |
k 0 0 2] 0 2 0 0 0 0 0 . .
2] ArRpARS-Arng 0.67 v Selection Details <>
8 |
o akiyama_mio © 0 0 0 1 6 0 0 0]
B 9 0.67
5 [;
< alice_cartelet 1 (4 0 0 0 0 0 0] - -
1 0.82 asuna asahina_miku..
[LYV
dekomori_sanae © 0 0 0 0 0 0 1 0] %w
3 0.33 l / 0.7432
J | -
asuna 9 0 0 0 0 0 0 0 !
12 0.67 [‘f ﬁ 0 e
asahina_mikuru ©) o 0 e e] 0 e -
10 ‘ 0.80 & 75\}

0.2910
~

PRECISION ©.75 ©.92 1.0 ©0.86 0.67 1.00 ©.90 1.0 1.00 0.80 MMWV‘/‘

Clarifai: Python API

< C' | @& Secure | https://clarifai-python.readthedocs.io

/latest/tutorial/#upload-images
@ clarifai Tutorial
Each of the examples below is a small independent code snippet within 10 lines that could work by
copy and paste to a python source code file. By playing with them, you should be getting started
with Clarifai API. For more information about the API, check the API Reference.

« Predict Tutorial
o Predict with Public Models

Installation Guide

© Tutorial
« Feedback Tutorial
Predict Tutorial o Concept model prediction
Feedback Tutorial o Detection model prediction

Upload Images o Face detection model prediction

Create a Model
Upload Images

Train the Model
Predict with Model

1 from clarifai.rest import ClarifaiApp
Instantiate an Image 2
3 app = ClarifaiApp()
Bulk Import Images 4
Gt 5 app.inputs.create_image from_url(url="https://samples.clarifai.con/puppy.jpeg’, concepts=['my pupp
earch the Image 6 app.inputs.create_image from_url(url="https://samples.clarifai.com/wedding.jpg’, not_concepts=['my
Basic Concepts g 5
API Reference Create a Model

This assumes you follow through the tutorial and finished the “Upload Images” Otherwise you

may not be able to create the model.

1 model = app.models.create(model_id="puppy"”, concepts=["my puppy"])

Train the Model

& Read the Docs

https://clarifai-python.readthedocs.io/en/latest/tutorial/

Google Cloud AutoML.: Python API

<> AutoML Vision BETA MoeFlow ADD IMAGES ~ 1l LABEL STATS FH EXPORT DATA

iskandar-test-project w

predict.py

o]

import sys

from google.cloud import automl_vlbetal

from google.cloud.automl_vlbetal.proto import service_pb2

def get_prediction(content, project_id, model_id):
prediction_client = automl_vlbetal.PredictionServiceClient()
name = 'projects/{}/locations/us-centrall/models/{}'.format(project_id, model_id)
payload = {'image': {'image_ bytes': content }}
params = {}
request = prediction_client.predict(name, payload, params)

return request # waits till request is returned

if _ name == '_ main_ ':

file_path = sys.argv[1]
project_id = sys.argv[2]
model_id = sys.argv[3]

with open(file_path, 'rb') as ff:
content = ff.read()

print get_prediction(content, project_id, model_id)

Execute the request

python predict.py YOUR LOCAL_IMAGE_FILE iskandar-test-project ICN5640832962537657205

Quick Comparison (as August 2018)

Top-1 Accuracy with pre-processed model (after face detection, same dataset)
Clarifai — 95.2% (they have been in this business for years)

Google Cloud AutoML — 93% (their model is based on improved version of Inception v3, so it fails on
almost the same test data)

MoeFlow (my model) — 88.6% (let be fair, I’'m not a machine learning expert and my job is unrelated to
machine learning #, but at least it’s free and | can put it together with my server!)

Azure Custom Vision — 77.4% (at least it’s better than Microsoft, but they are still in Beta)

https://emojipedia.org/cat-face-with-tears-of-joy/

Clarifai

Details

Vv TRANSFER-LEARNING-ANIME PREDICT C TRAIN

v aragaki_ayase 0.59 dekomori_sanae ¢.00
akemi_homura 8.25 asuna 0.00
ayanami_rei 0.06 ayase_eli 0.00
aqua 0.05 asahina_mikuru ¢.60
akiyama_mio 0.04 alice_cartelet 0.00

Create Concept

Vv GENERAL-V1.3

GENERAL-V1.3

illustration 0.97 face 0.90
woman 6.96 man 0.90
fun 0.94 people 0.89
fashion 0.94 vector 0.89
vouna 0 02 music 0 00

Google Cloud AutoML

Q AutoML Vision BETA MoeFlow ADD IMAGES ~ 1l, LABEL STATS EH EXPORT DATA iskandar-test-project v
_ Model
MoeFlow_v20180803063827 V.

QO

Test your model on new images

If your model will be used to make predictions on people, test your model on images that capture the diversity of your userbase. Learn more [

X
Predictions
Only top 5 labels are shown.
aragaki_ayase — 0.680
akiyama_mio - 0.277
akemi_homura " 0.032
asuna 0.007

asahina_mikuru 0.001

MoeFlow

Input:

Output:

Character

D 1 i ac2-user@i

Prediction
(Top-3)

e aragak
ayase

INFO:root: [('aragaki ayase', 0.54832304), ('hyoudou michiru', 0.21569832), ('mik &

i sayaka', 0.079943478)]

2018-06-04 08:48:44 - (network) [INFO] [127.0.0.1:58852]: POST http://127.0.0.1:88
88/ 200 4226

INFO:network:

2018-06-04 08:48:44 — (network) [INFO][127.0.0.1:58854]: GET http://127.0.0.1:888
8/static/images/1b0201bd4c6941f0adec66617c290e5b.jpg 200 32458

INFO:network:

2018-06-04 08:48:45 — (network) [INFO][127.0.0.1:58856]: GET http://127.0.0.1:888
8/static/images/65a0f659c5734b69a27665dd56fe25b2.jpg 200 32458

INFO:network:

¢ hyoudou
michiru

o miki
sayaka

Azure Custom Vision

My Tags

Predictions

Tag Probability
aqua 11%
ayanami_rei 9.9%
akemi_homura 8.8%
akiyama_mio 6.3%
aragaki_ayase 57%
ayase_eli 2.1%
asuna 2%

asahina_mikuru 0.6%

When should we use PaaS for Image Recognition?

(+) Image recognition is not directly related to your main business and you don’t want to
invest too much time on it

(+) You don’t need the capability of customizing training model
(+) You have money $$$, PaaS tends to get more expensive in the long run

(+) You are satisfied with the result, of course, you should compare all available PaaS out
there, they have their own strong points

What to compare:

- Single vs multi-objects, e.g.: Car vs [Car, Ball, ...]
- Single class vs multiple tags, e.g.: Car vs Toyota (Brand name), or [Vehicle: 0.99, Car: 0.97, ...]
- Top-1vs Top-x accuracy

- Cost

Closing Remarks

“Never-ending” Development

As the number of category increases, Top-1 accuracy will also decrease
since some characters are too similar (free-style art) and transfer learning
effect is diminished.

- Image noise

- Rotation / axis

- Face expressions (closed eyes, etc)
- Characters with “multiple” forms

- Brightness & Contrast

Fooling Neural Network

)
L

= Pl B s
obelisk comic book medicine slot car wheel ~ computer hand blower dial
chest keyboard telephone
assault rifle stethoscope digital clock soccer ball bagel pinwheel crossword punching bag

puzzle

paddle vacuum accordion screwdriver photocopler strawberry tile roof ski mask

four-poster Alncan sea snake hair slide nematode school bus panpipe traffic light

chameleon Original image Noisy image (10% impulse noise)

ll -« JlE)) bt I oLt o

projector spotlight green snake trifle volcano chainlink monarch
fence

Generalizing
ldeas

Solve Your
Own Problems!

Github Projects

freedomofkeima/MoeFlow: Repository for anime characters recognition website (Alpha)

freedomofkeima/transfer-learning-anime: Transfer Learning for Anime Characters Recognition

freedomofkeima/opencv-playground: Compare 2D and 3D OpenCV Cascade Classifier

Presentation Slide
https://freedomofkeima.com/pyconhk2018.pdf

Curated List
https://github.com/kjw0612/awesome-deep-vision
http://www.themtank.org/a-year-in-computer-vision

https://github.com/freedomofkeima/MoeFlow
https://github.com/freedomofkeima/transfer-learning-anime
https://github.com/freedomofkeima/opencv-playground
https://freedomofkeima.com/pyconhk2018.pdf
https://github.com/kjw0612/awesome-deep-vision
http://www.themtank.org/a-year-in-computer-vision

: “HDE
HDE, Inc. at Shibuya, Tokyo o

Global Internship Program
https://www.hde.co.ip/en/gip/

Full-timer benefits: Get your CfP accepted and the company will handle the rest!

https://www.hde.co.jp/en/gip/

‘:.A G.»j

Procram

j M‘.),r’ .l““ Jom.“

Thank you!

C) freedomofkeima

%k k

https://github.com/freedomofkeima

