
Deep Learning in Python:
Image Recognition for Anime Characters

with Transfer Learning

1st PyCon in Indonesia - 2017

Iskandar Setiadi

Github
https://github.com/freedomofkeima

Website
https://freedomofkeima.com/

From Jakarta, Indonesia
Graduated from ITB - 2015
Speaker in PyCon JP - 2017

Iskandar Setiadi

Software Engineer at Japan

HDE, Inc. (https://hde.co.jp/en/)

→ Easy to use

→ Great community

→ Swiss army knife: website development, data science, etc

Why Python?

Image Recognition in Daily Life

Self-driving car Smart home

Image Recognition in Daily Life

Smart workplace Face ID

Background

Problem

- Cropped images

- Edited images

- Unindexed images

Problem

- Photos

1

ILSVRC
Largest Computer Vision Competition

Starting from 2015, deep

learning has better top-5

error score compared to

human (1000 categories)!

Image Recognition Challenges

55000 Training data

5000 Validation data

10000 Test data

Tutorial for ML Beginner: MNIST & TensorFlow

URL: https://www.tensorflow.org/get_started/mnist/beginners

https://www.tensorflow.org/get_started/mnist/beginners

Tutorial for ML Beginner: MNIST & TensorFlow

URL: https://www.tensorflow.org/get_started/mnist/beginners

https://www.tensorflow.org/get_started/mnist/beginners

$ pip3 install --upgrade tensorflow

or

$ pip3 install --upgrade tensorflow-gpu

TensorFlow Installation

URL: https://www.tensorflow.org/install/

https://www.tensorflow.org/install/

x = tf.placeholder(tf.float32, [None, 784]) # Placeholder
W = tf.Variable(tf.zeros([784, 10])) # Weight (W)
b = tf.Variable(tf.zeros([10])) # Bias (b)

Tensor Flow it!
We can run it in CPU and GPU (let TensorFlow handle it)
y = tf.nn.softmax(tf.matmul(x, W) + b)

MNIST Model: TensorFlow + Python

Multilayer Neural Network with Logistic Regression Acc. : ~ 91%
Speed (1000 iter, 0.01 learning rate): < 1 minute

Convolutional Neural Network (Deep Learning) Acc.: ~ 99%
Speed (20000 iter, 0.0001 learning rate):
~2700 seconds (without GPU), ~360 seconds (with GPU)

MNIST Result & Comparison

1

Deep Learning

Increasing number of

iterations will get stagnated

at certain point.

More layers! But it is slow :’(

Deep Learning: Convolution

Deep Learning: Convolution

Face Detection: Introduction

Face Detection (Human Face)

Adapted from https://github.com/shantnu/FaceDetect:

import cv2

faceCascade = cv2.CascadeClassifier("haarcascade_frontalface_default.xml")

image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faces = faceCascade.detectMultiScale(gray, scaleFactor=1.1,
 minNeighbors=5, minSize=(30, 30))

https://github.com/shantnu/FaceDetect

Face Detection (Human Face)

Face Detection (Same Model - Anime Face)

2D is Better not equal to 3D face!

Facial features are different!

e.g.: 2D has no nose

Face Detection: Train New Model!

Adapted from https://github.com/nagadomi/lbpcascade_animeface:

import cv2

cascade = cv2.CascadeClassifier("lbpcascade_animeface.xml")

image = cv2.imread(imagePath)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

faces = cascade.detectMultiScale(gray, scaleFactor=1.1,
 minNeighbors=5, minSize=(24, 24))

https://github.com/nagadomi/lbpcascade_animeface

Face Detection (Anime Face)

Face Detection (Same Model - Human Face)

Face Recognition

Face Detection → “Accomplished”

Full-layered Deep Learning → Requires a huge dataset, weeks to train

Google Inception-v3: 1.2 million training data, 1000 classes, 1 week to train

Transfer Learning

From certain Top-5 characters indexing website:

- 35000 registered characters
- Top 1000 characters: 70+ images
- Top 2000 characters: 40+ images

Dataset size is small! Google Inception-v3 uses > 1000 images per category.

With transfer learning, we don’t need to retrain low-level features extraction model.

URL: https://www.tensorflow.org/tutorials/image_retraining

https://www.tensorflow.org/tutorials/image_retraining

Transfer Learning for Anime Characters

Transfer Learning: Retrained Layers

Dropout: Dropping out units to prevent overfitting

Fully Connected: Extracting global features, every node in the layer is connected to
the preceding layer

Softmax: Squashing final layer to make a prediction, which sums up to 1. For example,
if we have 2 classes and class A has the value of 0.95, then class B will have the value
of 0.05.

Transfer Learning: Retrain Final Layer

Build the retrainer:

$ bazel build tensorflow/examples/image_retraining:retrain

Execute the retrainer:

$ bazel-bin/tensorflow/examples/image_retraining/retrain --image_dir ~/images

Hyperparameters: learning rate, number of iterations, distortions factor, ...

MoeFlow: Web App

URL: https://github.com/freedomofkeima/MoeFlow

https://github.com/freedomofkeima/MoeFlow

MoeFlow: Specification

→ Build with Sanic (Flask-like Python 3.5+ web server)

→ While training model requires huge GPU resources (g2.2xlarge), using retrained
model can be hosted in server with small resources (t2.micro)

What it does:

- Run face detection with OpenCV

- Resize image to a fixed proportion

- Run classification with TensorFlow

MoeFlow: Use Retrained Model

MoeFlow: Use Retrained Model

Test Results (Number of Class)

With 100 class and 60 images per
class, it achieves 70.1% top-1
accuracy.

When the number of class is
relatively small (~35), it can achieve
80%+ top-1 accuracy.

URL: https://github.com/freedomofkeima/MoeFlow/blob/master/100_class_traning_note.md

https://github.com/freedomofkeima/MoeFlow/blob/master/100_class_traning_note.md

Test Results (Dataset size)

100 class experiment:

→ 30 images per class: 60.3% accuracy

→ 60 images per class: 70.1% accuracy

All tests are done with images which are not in training / validation set.

URL: https://github.com/freedomofkeima/MoeFlow/blob/master/100_class_traning_note.md

https://github.com/freedomofkeima/MoeFlow/blob/master/100_class_traning_note.md

Results / Demo

https://freedomofkeima.com/moeflow/

Results / Demo

https://freedomofkeima.com/moeflow/

Problems (Example)

“Never-ending” Development

- Image noise
- Rotation / axis
- Face expressions (closed eyes, etc)
- Characters with “multiple” forms
- Brightness & Contrast

Fooling Neural Network

Image Recognition as a Service

If you need image recognition features for production-ready environment
and you don’t have any specific requirements to build your model from
ground:

- Amazon Rekognition
- Computer Vision API in Cognitive Service (Azure)

My Github Projects

freedomofkeima/MoeFlow: Repository for anime characters recognition website (Alpha)

freedomofkeima/transfer-learning-anime: Transfer Learning for Anime Characters Recognition

freedomofkeima/opencv-playground: Compare 2D and 3D OpenCV Cascade Classifier

Presentation Slide
https://freedomofkeima.com/pyconid2017.pdf

Curated List
https://github.com/kjw0612/awesome-deep-vision
http://www.themtank.org/a-year-in-computer-vision

https://github.com/freedomofkeima/MoeFlow
https://github.com/freedomofkeima/transfer-learning-anime
https://github.com/freedomofkeima/opencv-playground
https://freedomofkeima.com/pyconid2017.pdf
https://github.com/kjw0612/awesome-deep-vision
http://www.themtank.org/a-year-in-computer-vision

HDE, Inc. at Shibuya, Tokyo

➔ Global Internship Program (https://www.hde.co.jp/en/gip/)

➔ 15% international people

➔ 6 people from Indonesia

https://www.hde.co.jp/en/gip/

Thank you!

 freedomofkeima

https://github.com/freedomofkeima

