
Python Website is Slow?
Think Again!

PyCon JP 2019

Iskandar Setiadi
Software Engineer at HENNGE, K.K.

Iskandar Setiadi

From Jakarta, Indonesia
Software Engineer in Japan

HENNGE, K.K.
https://hennge.com/global/

Github
https://github.com/freedomofkeima

Blog
https://freedomofkeima.com/blog/

Speaker in PyCons:
- 2017: Japan, Indonesia
- 2018: Malaysia, Japan, Hong Kong
- 2019: Italy, Japan

PyCon JP 2017PyCon JP 2018

Where is Indonesia?

HENNGE, K.K. as PyCon JP Sprint Sponsor

Who trusts Python?

Python Users

Instagram, which has 400 million
active users, has migrated from
Python 2 to Python 3 around two
years ago.

Reference: https://thenewstack.io/instagram-makes-smooth-move-python-3/

https://thenewstack.io/instagram-makes-smooth-move-python-3/

Python Users

- Quora
- Reddit
- Spotify
- Dropbox (client app)
- And many other big companies!

Python is slow?

Python Website is Slow

Reference: http://devhumor.com/media/python-is-great

http://devhumor.com/media/python-is-great

Python is slow because of . . .

- Python is interpreted language
- Python uses GIL (Global Interpreter Lock)

Number of requests per second

Reference: https://medium.freecodecamp.org/million-requests-per-second-with-python-95c137af319

https://medium.freecodecamp.org/million-requests-per-second-with-python-95c137af319

But . . .

In previous benchmark:

Tornado can serve 2968 requests per second

Node JS can serve 54327 requests per second

Golang can serve 54502 requests per second

How many requests can your actual server handle per second?

→ “Around 20 requests per second per Docker container.”

Is it actually a bad number?

How many requests can your actual server handle per second?

→ “Around 20 requests per second per Docker container.”

 1 instance with 4 CPU cores = 4 Docker containers

 10 instances = 40 Docker containers

 10 instances = 40 * 20 = 800 requests / second

 1 hour = 3600 seconds = 2 880 000 requests / hour

For web development,
microbenchmark is not useful

User Perspective

How long does it take to handle a single authentication request?

→ “For each user request, it takes around 400 ms.”

Breakdowns (Simplified)

An authentication request comes to your server. For each user request, we
need to:

- Retrieve tenant information from DB (1 database call)
- Retrieve user information from DB (1 database call)
- Retrieve user policy rules from DB (several database calls)
- ...

→ 10 database calls * 20 ms (latency + processing time) = 200 ms

Breakdowns (Simplified)

400 ms per request:

- 200 ms for 10 database calls
- 100 ms for round-trip latency to the user
- 10 ms to generate SAML response
- … (other part of code)
- 1/2968 s = 0.3 ms for handling a single Tornado request (NEGLIGIBLE)

Breakdowns (Simplified)

400 ms per request:

- 200 ms for 10 database calls (I/O BOUND)
- 100 ms for round-trip latency to the user (I/O BOUND)
- 10 ms to generate SAML response (CPU BOUND)
- … (other part of code)
- 1/2968 s = 0.3 ms for handling a single Tornado request (NEGLIGIBLE)

Database queries

Database Queries

In the past, we rarely checked

outgoing DB calls per function.

After we audited it, we found

that some DB calls are actually

redundant.

Redundant DB queries

We found out that several DB queries are actually redundant because:

- Old code / logic is removed, however, DB call remains
- Some DB items are retrieved twice (duplicated) on a single request

How do we solve this?

→ Python decorator to the rescue!

Decorators to the help!

def call_counter(func):
 def helper(*args, **kwargs):
 helper.calls += 1
 print(*args)
 func(*args, **kwargs)
 helper.calls = 0
 return helper

@call_counter
def get_item(key):
 print("Retrieve from DB: ",
key)

get_item("USER@example.com@test")
get_item("DOMAIN@example.com")

print(get_item.calls)

USER@example.com@test
Retrieve from DB: USER@example.com@test
DOMAIN@example.com
Retrieve from DB: DOMAIN@example.com
2

Python Decorators

After tracking each requests via a decorator, we get the following results:

200 POST /login/ takes 375 ms

[DOMAIN@example.com, USER@example.com@test, ...]

Ran 12 number of queries for this request

Async IO

Async IO

Async IO → Python native asynchronous module, introduced in Python 3.4

AIOHTTP → Asynchronous HTTP Client/Server for asyncio & Python

If you’re familiar with: Tornado, Sanic, etc → Then you know how it works!

Async IO

Async IO is nice because:

- If we run multiple processes of Python, the bottleneck is CPU-level
context-switching

- If we use multi-threading in Python, GIL and threading itself are our
problems: race condition, dead locks, etc

Async IO → scheduling is done in application level!

But . . . common pitfalls

“async” and “await” keyword won’t make your program asynchronous
magically.

Async IO

async def msg(text):
 await asyncio.sleep(0.1)
 print(text)

async def long_op(text):
 # Let’s say the actual code here is boto3 get item operation
 time.sleep(3)
 await msg(text)

async def main():
 await msg('first')

 # Long operation should be handled asynchronously
 # Third should be printed after “await task”
 task = asyncio.ensure_future(long_operation('third'))

 await asyncio.sleep(0.1)
 await msg('second')

 await task

Async IO

async def msg(text):
 await asyncio.sleep(0.1)
 print(text)

async def long_op(text):
 time.sleep(3)
 await msg(text)

async def main():
 await msg('first')
 task =
asyncio.ensure_future(long_operatio
n('third'))
 await asyncio.sleep(0.1)
 await msg('second')
 await task

Result:

first
** after 3 seconds **
third
second

Async IO Compatible Libraries

“botocore” → “aiobotocore”

“aapns” - Asynchronous Apple Push Notification Service

https://github.com/HDE/aapns

“arsenic” - Async WebDriver implementation for asyncio and
asyncio-compatible frameworks

https://github.com/HDE/arsenic

https://github.com/HDE/aapns
https://github.com/HDE/arsenic

Async IO

async def msg(text):
 await asyncio.sleep(0.1)
 print(text)

async def long_op(text):
 # Let’s say the actual code here is aiobotocore get item operation
 await asyncio.sleep(3)
 await msg(text)

async def main():
 await msg('first')

 # Long operation should be handled asynchronously
 # Third should be printed after “await task”
 task = asyncio.ensure_future(long_operation('third'))

 await asyncio.sleep(0.1)
 await msg('second')

 await task

Async IO

async def msg(text):
 await asyncio.sleep(0.1)
 print(text)

async def long_op(text):
 await asyncio.sleep(3)
 await msg(text)

async def main():
 await msg('first')
 task =
asyncio.ensure_future(long_operatio
n('third'))
 await asyncio.sleep(0.1)
 await msg('second')
 await task

Result:

first
second
** after 3 seconds **
third

Third-party library

A tale of botocore

Once upon a time, we decided that it’s about time to upgrade our locked
dependencies to the latest.

Days after release, we realized that our average response time has jumped
from 200 ms to 500 ms. We tried to dissect what went wrong, but alas, we
couldn’t pinpoint it down until the next day came.

A tale of botocore

Since performance degradation occurred at all endpoints, we suspected it
has something to do with AWS-related communication.

Boto3, the AWS SDK for Python, utilizes botocore as the low-level
interface. We tried doing “binary-search” for the problematic version and
voila! We found someone with similar problem on the internet!

A tale of botocore

Reference: https://github.com/boto/botocore/issues/1252

https://github.com/boto/botocore/issues/1252

A tale of botocore

The problem occurred since botocore has changed their signature version
from v2 to v4 by default.

In Sig v4, “region_name” is used as a part to sign the request. If it doesn’t
exist, a round-trip request is made to “us-east-1” region for resolving its
region name and since our development is based in Japan, we experienced a
performance degradation!

What we learn: Performance test & upgrade often!

In production environment, we should use locked version of dependencies.

In staging environment, we should try upgrading our dependencies to the
latest as often as possible. After each upgrades, we should ensure no
performance degradation is introduced.

Performance test metrics: average response time, CPU usage, memory
usage after several hours (avoid memory leaks)

Python-specific improvements

Python 2 vs Python 3

Use Python 3 instead of Python 2!

End of life for Python 2 is January 1, 2020

Four our web application, Python 3 is ~30% faster than Python 2.

Python 2.7 vs Python 3.6 (p50)

Python 2.7 vs Python 3.6 (CPU usage)

Python 2 to 3 migration

It’s time to use best practices!

- Type hints
- Data class (or attrs, before Python 3.7)

Async IO

from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Dict, Optional

@dataclass(frozen=True)
class User:
 username: str
 display_name: Optional[str]

 @classmethod
 def from_db(cls, data: Dict[str, Any]) -> User:
 return cls(
 username=data["username"],
 display_name=data.get("display_name"),
)

user = User.from_db({"username": "iskandar"})

Infrastructure Optimization

AWS: Mixed autoscaling with spot instances

AWS: Track unused stuffs & retention period

Especially in our staging environment, we realized we often forgot to
remove:

- Unused load balancer (20$ per month per load balancer)
- Unused disk volume

And also, do we need to store logs & database backup for: 1 year? 3 years?

Others

Various improvements

- Cache commonly accessed data: Redis, CDN, ... (I/O bound)
- Improper data structure or algorithm (CPU bound)
- Use generator instead of for-loops, especially if you’re low in memory
- Utilize memory profiler & pdb in pinpointing bottlenecks
- And many other aspects!

Why don’t you . . .

Why don’t you go serverless?

For some smaller tasks, we tried doing serverless but we decided that the
cost of maintenance and re-architecting our system is not worth it for now.
Serverless might be good if your team is really big.

Our problems:

- Complexity: development tools, DevOps toolings, “wiring”
- Cryptography related module (openSSL version, etc)
- Monitoring & log processing

Why don’t you use “x” language?

Reference: https://medium.com/pyslackers/yes-python-is-slow-and-i-dont-care-13763980b5a1

https://medium.com/pyslackers/yes-python-is-slow-and-i-dont-care-13763980b5a1

Optimize for user experience,
Cost savings will come by itself

What we achieve

By end of 2017:

Average response time: 400 ms → 150 ms

AWS cost: $ 250 000 per year → $ 100 000 per year (60% savings)

By end of 2018:

Number of users: 4 million users in 5 000 companies

Does it worth the effort?

→ Not really, since your developer time in optimizing the website might be
more expensive than the actual savings in short-term, especially if you
rewrite the codebase / recreate your architecture every several years

Does it worth the effort?

→ Yes, for the sake of better user experience (lower churn rate) and faster
rate of time-to-market (with Python)

→ Yes, as you are improving your system incrementally while developing new
features, it’s not a one-time thing. Knowing the best practice helps a lot!

“Any improvements made
anywhere besides the bottleneck

are an illusion.” - Gene Kim

Conclusion

For most web applications, the slowness of Python is mostly negligible since
the bottleneck is usually located on I/O-bound operations.

A lot of popular websites, such as Instagram, are developed in Python.

However, if your web applications do a lot of CPU-bound computation, you
might want to consider offloading some CPU heavy tasks to other languages,
e.g.: C/C++ (Cython), Go.

See https://docs.python.org/3.7/extending/extending.html

https://docs.python.org/3.7/extending/extending.html

HENNGE, K.K. at Shibuya, Tokyo

Global Internship Program

https://hennge.com/global/gip/

Full-timer benefits: Get your CfP accepted and our company will handle the rest!

https://hennge.com/global/gip/

Up to Mar ‘18

Thank you!

 freedomofkeima

Presentation slide is available at
https://freedomofkeima.com/pyconjp2019.pdf

https://github.com/freedomofkeima
https://freedomofkeima.com/pyconjp2019.pdf

